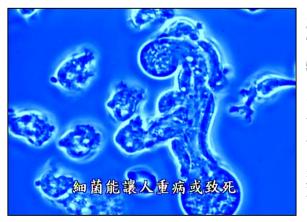
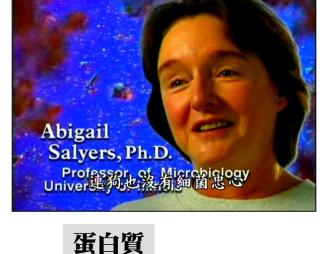
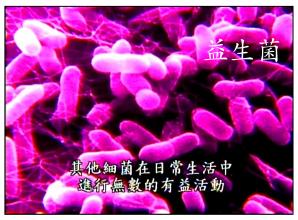

Understanding: **Bacteria** 細菌


病毒比細菌更小

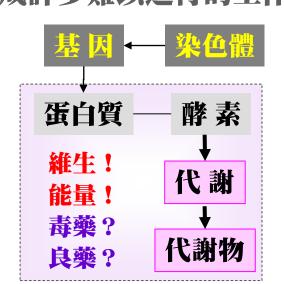
細菌是古老、簡單、有效、多樣豐富的生物。

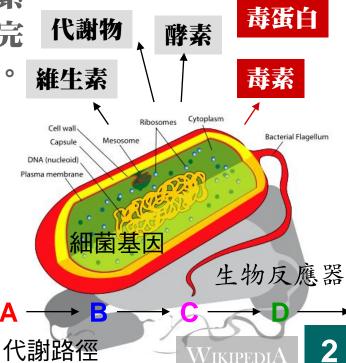

即便如此原始的簡單生物,細菌所依循的基本 生命法則與人類相似。



細菌無所不在,與人類關係密切,可能有益或有害

細菌可能是最早出現的生物之一,對人類常常造成大災難;但與人類的關係 也非常密切,大陽菌與人類成共生關係。亦敵亦友

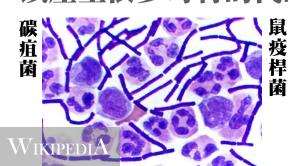

Soap bar stain


remover with unique,

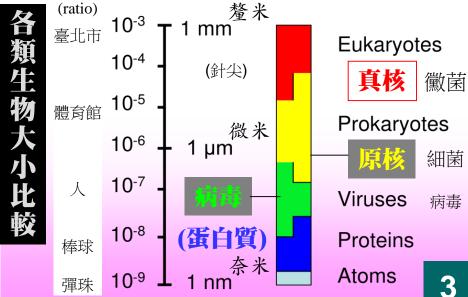
effective Bio-Enzyme System

PROSE - THE FIRST AID FOR STAINS

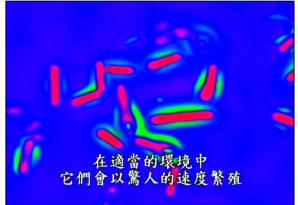
細菌能產生有用的蛋白質 或營養分子,其中有酵素 可發揮催化功能,幫忙完 成許多難以進行的工作。



細菌種類非常多樣,演化出奇妙功能以適應各種環境

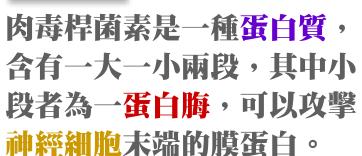


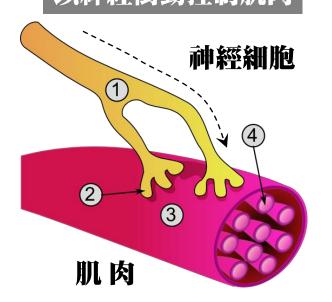
在演化上,細菌屬於較原始的原核 細胞,可能很早就存在地球上,其 種類也很多,代謝各具其特點,可 以產生很多奇特的代謝物質。



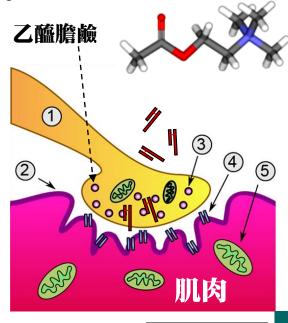
有關細胞代謝的錯誤描述:

- (1) 代謝也就是『新陳代謝』的簡稱
- (2) 所有生物具相似的主要代謝路徑
- (3) 人和細菌的代謝物不能互相流用
- (4) 細菌可代謝產生對人有用的物質
- (5) 細菌可代謝產生對人有害的物質


肉毒桿菌素毒性很強,有醫療及軍事用途

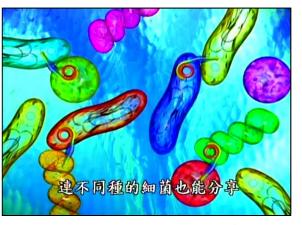

毒素抑制神經傳導物 質之釋放,干擾神經 與肌肉連通,因而造 成肌肉痲痹或鬆弛, 防止肌肉過度收縮。

Botulin


微量注射肉毒素可以鬆弛臉 上皺紋,成為美容的工具。

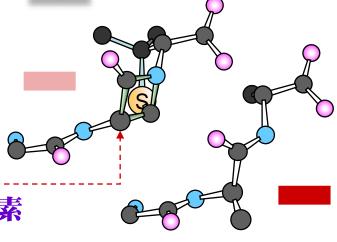
以神經衝動控制肌肉

Clostridium botulinum



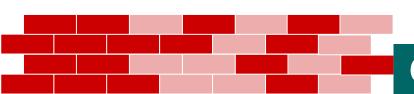
黴菌 (真核) 與細菌 (原核) 之間的生物戰爭

人類的健康一直受到 微生物的威脅,直到 二戰期間,弗萊明意 外發現青黴素才得以 主動控制,但也引發 想不到的生物戰爭。



不同細菌之間,可以自由傳遞遺傳信息。 而細菌的演化速度極 快,少數獲得抗藥性 的基因會很快傳開。

青黴素



水解青黴素

抗藥酵素

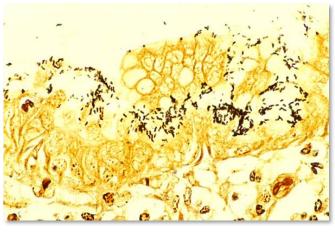
抗藥基因

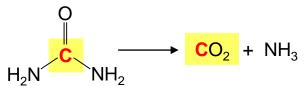
青黴素 (上) 與細菌之細胞壁材料 (下) 很像,細菌酵素誤以為基質而被抑制

有關抗生素的錯誤描述:

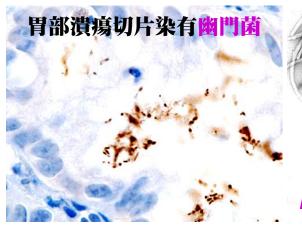
- (1) 抗生素是某種生物的代謝物質
- (2) 抗生素可以殺死所有的微生物
- (3) 演化天擇可耐受抗生素的新種
- (4) 此抗藥新種可以把抗生素分解
- (5) 人類無法贏得對抗細菌的戰爭

胃潰瘍也可能是幽門菌所致,世界 2/3 人受感染

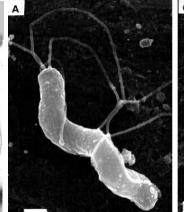

1982 兩位澳洲醫生發現 胃潰瘍與細菌有關,一 剛開始到處碰壁,逐漸 被證實後,終於 2005 年 獲得諾貝爾醫學獎。

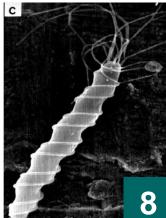


幽門菌為何不怕胃酸? 躲在胃壁組織中慢慢生 長,且有酵素把尿素轉 換成氨 NH₃ 與 CO₂ 因 此得以中和部份胃酸。

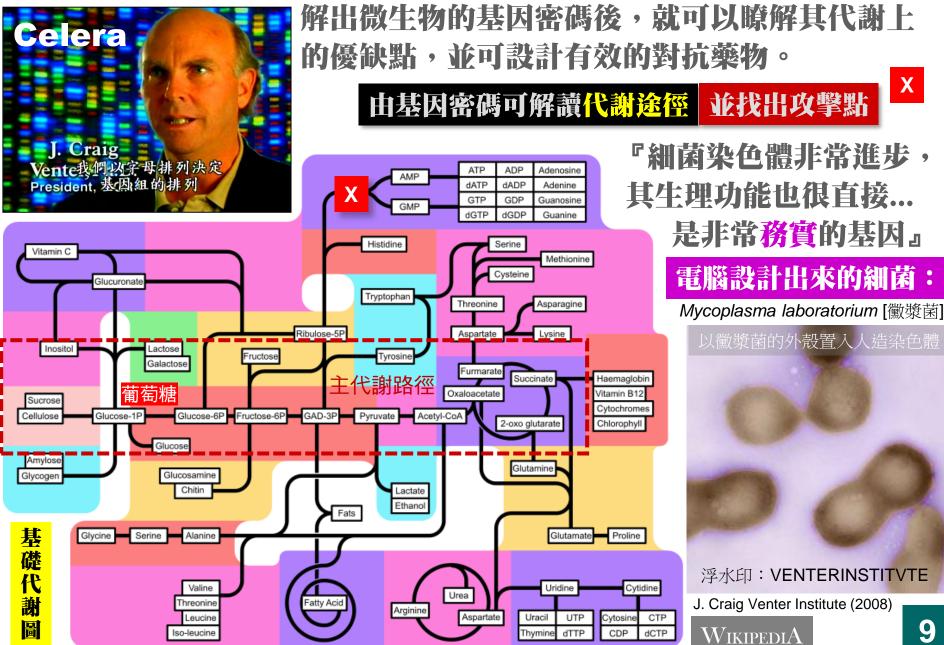


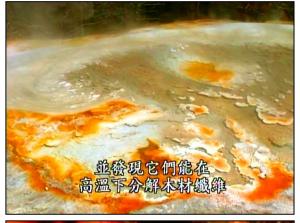
幽門菌躲在胃壁上皮細胞





Helicobacter pylori - Physiology & Genetics (2001) ASM Press



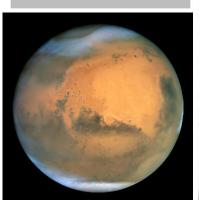


細菌的基因很小,容易被解碼,有其演化優勢

微生物可生長在各種極端環境,外星有無細菌?

許多嚴苛的環境,都 火星人之謎 發現有微生物生長。 它們如何適應環境?

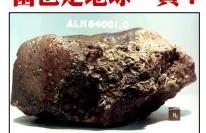
火山、温泉、死海、地底、深海

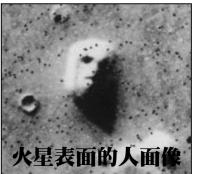


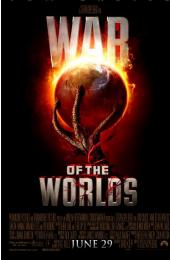
土壤中的微生物遠比 我們想像多,也蘊藏 極豐富的基因寶藏; 但是大部分都無法在 實驗室中分離培養。

火星隕石所發現的長 條蟲狀物,長度只有 20 nm,可能是礦物 質的沈積物。Why?

一個蛋白質就有 4 nm 長






Wells' The War of the Worlds

火星人入侵,地球被細菌拯救;<mark>細</mark>

菌也是地球一員!

WikipediA

有關細菌本質的錯誤描述:

- (1) 細菌的基因與人類比較小很多
- (2) 細菌能夠生活在許多極端環境
- (3) 細菌與其他生物間有共生關係
- (4) 細菌也是整個地球生態圈一員
- (5) 人類與細菌的遺傳密碼不相同

人類應如何與細菌相處?

- (1) 應該有效控制細菌以造福人類
- (2) 科學家應發展更有效的抗生素
- (3) 細菌有益亦有害必須小心對應
- (4) 細菌與人類已發展出共生關係
- (5) 人類不應該干涉細菌的生存權

關鍵名詞

原核生物 prokaryote 真核生物 eukaryote 共生(菌) symbiosis 奈米 nanometer 代謝物 metabolite 肉毒桿菌 botulin 青黴素 penicillin 幽門桿菌 H. pylori

胃潰瘍 ulcer Celera 塞雷拉 J. Craig Venter 基因體解碼 代謝路徑圖 極端環境生物 土壤微生物 火星生物

細菌在整個生物界的分類位置如何?

『細菌基因體很小,構造較單純原始』

細菌如何影響人類?

『其代謝物或產物影響人體生理功能』

細菌如何對抗生素產生抗藥性?

『細菌演化出可以分解抗生素的酵素』

細菌與人類有何異同之處? (任舉二例)

『都是依循 Central Dogma 運作生命』

『主代謝大致相同,其餘則差異大』

討論問題

- (1) 細菌如何導致人類生病?細菌有罪嗎?
- (2) 細菌對人類是否也有許多貢獻?人類應該感激嗎?
- (3) 細菌的主要代謝路徑及代謝物與人類幾 乎完全一樣,你對這一點有何感想?
- (4) 青黴素其實是黴菌對細菌的生物戰劑, 它們之間為何要相互競爭?
- (5) 假如有一天地球上的細菌全部不見了, 請想像地球將會有何種變化?

細胞、分子與生命」上課進度一覽

生命源起

宇宙誕生 **C11**

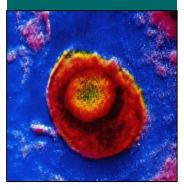
太陽系與地球 **C12**

C13 生命源起

遺傳機制 **C14**

S10 生命的故事

C01 快樂的力量


鮑林 Pauling **C21**

達爾文 Darwin **C22**

C23 費曼 Feynman S20 蛋白質

C23b 奈米烏托邦

微生物

微生物:原核細胞 **C31**

幽門螺旋菌:胃潰瘍 **C32**

病毒:AIDS, SARS **C33**

C34 人體防衛系統

S30 基礎免疫 C32a 胃 C32b 腸

S31 細胞大戰