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Glycogen phosphorylase is regulated complicatedly to control the carbohydrate metabolism




Comparison of alpha glucan phosphorylases
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Starch phosphorylase has two isoforms (L-SP and H-SP). L-SP is the major isoform in the
sweet potato roots and other plants




SP catalyzes the reversible phosphorolysis of starch
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Starch phosphorylase might involve in starch biosynthesis

Chang et al, (2000) Bot Bull Acad Sin 41:105-111

SP activity

Primar . Potato
fibroug Pencil Root size Mingo-Castel et al. 1976

roots roots Storage roots in diameter Albrecht et al. 2001
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. :
Liu & Shannon 1981
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Baun et al. 1970
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SP expression
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Ohdan et al. 2005
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Duwenig et al. 1997
Albrecht et al. 2001
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Duwenig et al. 1997
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Protein interaction
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Tetlow et al. 2004

Starch phosphorylase increases proportionally when the roots accumulate starch
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L-SP Is phosphorylated and bound with SBE

The Plant Cell, Vol. 16, 684-708, March 2004, www.plantcell.org ©@ 2004 American Society of Plant Biologists

Tetlow et al. J. Exp. Bot. (2004) 55: 2131-2145

Protein Phosphorylation in Amyloplasts Regulates Starch
Branching Enzyme Activity and Protein-Protein Interactions
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Protein phosphorylation in amyloplasts and chloroplasts of Triticum aestivum (w
of intact plastids with v-32P-ATP. Among the soluble phosphoproteins detected i
enzyme !SBE! were phosphorylated in amyloplasts (SBEI, SBElla, and SBEIIb), an
and SBElla) were shown to be phosphorylated after sequencing of the immuno
using quadrupole-orthogonal acceleration time of flight mass spectrometry. P
phorylated SBE forms indicated that the proteins are all phosphorylated on
associated phosphoproteins after incubation of intact amyloplasts with +y-32P-
forms of SBEIl and two granule-associated forms of starch synthase (SS) are pho
of SBE activity in amyloplasts and chloroplasts shomﬂiun act
whereas dephosphorylation using alkaline phosphatase reduced the catalytic
and dephosphorylation had no efiect on the measurable activity of SBEI in amylo
of both granule-bound forms of SBEIl in amyloplasts were unaffected by
experiments using peptide-specific anti-SBE antibodies showed that SBEllb an
precipitated with SBEI in a phosphorylation-dependent manner, suggesting th
plexes within the amyloplast in vivo. Conversely, dephosphorylation of immu
disassembly. This article reports direct evidence that enzymes of starch metabol
by protein phosphorylation and indicate a wider role for protein phosphorylati
control of starch anabolism and catabolism.

2140 Tetlow et al.
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protein phosphatase(s)

B. Amyloplast/Chloroplast

Fig. 2. Model of phosphorylation-dependent protein complex formation
involved in storage starch biosynthesis. Activation of SBEIla (in
chloroplasts and amyloplasts, A and B), and activation and complex
formation involving SBEL SBEIIb, and SP by protein phosphorylation in
the amyloplast stroma (A) stimulates amylopectin biosynthesis. The
functional relationships between the different components of the putative
protein complex are unclear. It is notable that in mutants lacking S511a,
that starch granules are also observed to be devoid of SSI, SBElla, and

ATP
protein kinase(s)

protein phosphatase(s)

forming a complex under in vivo conditions.

SBEIIb, suggesting that these components may also be capable E




Starch is synthesized by elongation-branching-trimming cycles
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Ball S et al. (1996) From glycogen to amylopectin - a model for the biogenesis of the plant starch

granule. Cell 86: 349-352




“Is there a role for phosphorylase in starch synthesis?”

IS THERE A ROLE FOR PHOSPHORYLASE IN STARCH
SYNTHESIS?

Until the discovery of the glucosyl transferases that transfer glucose from
nucleoside diphosphate glucoses to the nonreducing ends of growing starch or
glycogen molecules, it was assumed that the enzyme responsible for lengthen-
ing Nelson O, Pan D (1995) Starch synthesis in maize endosperms. :
this enzyt Annu Rev Plant Physiol Plant Mol Biol 46: 475-496 ® and the
amount ot Pi in homogenates of starch-synthesizing storage tissues would be
inimical to starch synthesis, it was necessary to postulate that much of the P1
was effectively sequestered away from the sites of starch synthesis. Since the
discovery of these glucosyl transferases (34, 54), many investigators have
tacitly assumed that they are responsible for all starch synthesis. The GBSS
and the SSSs, which catalyze essentially irreversible reactions, clearly are
better suited to fulfill the synthetic role. The mutations (72 and sh2) that so
drastically lower the ADPGIc pyrophosphorylase activity attest to the major
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L78 might be evolved from an intron

Chen et al, (2002) Physiologia Plantarum 114:506-515
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The DNA complexity analysis (PC/GENE) reveals that L78 might be derived from an intron
sequence during the evolution of SP gene




L78 is Iinserted in the glucan binding site of L-SP

Chen et al, (2002) Physiologia Plantarum 114:506-515
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Insertion

L-form starch phosphorylase (L-SP)
(low affinity type)

L-SP has a 78-amino acid insertion (L78) in the middle of the molecule, which blocks the gluca
binding site of L-SP rm




L78 sequence reveals unigque structural features

Chen et al, (2002) Physiologia Plantarum 114:506-515
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Analysis of the amino acid sequence on L78 and its C-terminal flanking residues shows
several unique structural features. A “PEST sequence” is found in the middle of L78




L-SP Is proteolytic modified but still keeps its activity

Chen et al, (2002) Physiologia Plantarum 114:506-515
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The proteolytic modification of partially purified L-SP (A). Although L-SP molecule is nicked, it

keeps its native quaternary structure (B) and catalytic activity (C)




L-SP is modified into two final stable fragments

Chen et al, (2002) Physiologia Plantarum 114:506-515
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Monoclonal antibodies (J3b and H7c) simplify the SDS-PAGE patterns of L-SP during the
proteolytic procedure, and reveal two final stable fragments of L-SP (N and C)

kDa
250

98
64

50

36

30




L-SP is modified by

controlled proteolytic process

Chen et al, (2002) Physiologia Plantarum 114:506-515
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L1 and L2 peptides are completely removed from L78

Chen et al, (2002) Physiologia Plantarum 114:506-515
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Why an intron was evolved to express, and then the expressed peptide was cut away?




Proteolysis increases the affinity to starch, but not Glc-1-P

Chen et al, (2002) Physiologia Plantarum 114:506-515
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The proteolytic modified L-SP shows higher affinity toward one of its substrate (starch, A)
But the intact L-SP has higher affinity toward Glc-1-P (B)




Removing L78 exposes starch binding site on L-SP
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The starch binding site is opened by removing peptides on L78




The affinity to starch is increasing after proteolysis

Natlve-PAG E Chen et al, (2002) Physiologia Plantarum 114:506-515
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The modified L-SP is retarded in native electrophoresis gel containing soluble starch




L78 as a molecular switch in regulating L-SP catalytic direction
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Intact L-SP binds Glc-1-P preferentially and the L78 blocks the starch binding site




Primer-independent glucan biosynthesis from single Glc-1-P

Chen et al, (2006) submitting

Q‘@ a Glc-1-P (mM)
Glc-1-P ]

<:>_® + O 1 2 5 10 20 30 50
\ Glc-1-P R

» SP110

e % R Amylose

(the initiation step) ot "“,« vy g gy - w8 5o
< @ SDS-PAGE (10%)
v b Glc-1-P (mM)
- ]
AN >‘® 0 1 2 5 10 20 30 50

<>‘<>’<>’<>‘<><>’<>‘<>‘<>-® '%mAmylose

Amylose (straight-chain starch) Agarose gel (0.5%)

Glucan is synthesized in vitro by L-SP from single Glc-1-P in the absence of a primer




The amylose synthesized is radioactive

Sephadex G-25

Chen et al, (2006) submitting
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The radioactive Glc-1-P is covalently bound to amylose
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Further purification by ion exchange
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The amylose contains Glc-1-P moieties

Chen et al, (2006) submitting
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Degree of polymerization reaches several thousands

Chen et al, (2006) submitting
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Glc-1-P consumption has three phases, suggesting a mechanism for glucan polymerization




The PI activity of L-SP Is lost when its L78 is removed

Chen et al, (2006) submitting
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Does L78 serve as the “primer” for amylose synthesis ? Or an anchoring point for Glc-1-P?
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Active site of L-SP and possible Pl action mechanism




Action mechanism for Pl amylose synthesis (1)

Unpublished
HOH,C
HO O
HO N —H
HO HOH,C
e HO ©
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oo O
(l)/ O @ """" O

Glc-1-P on A site loses its phosphate as interacting with the phosphate on the cofactor PLP




Action mechanism for Pl amylose synthesis (2)

Unpublished

HOH,C carbonium
HO/$/O
HO ‘\\+ alkoxide
HO H . HOHC
,O ..... HO O
| HO 4‘\ _H
. HO
0=— @l) ------- o !
oo O _ _
o/ O @ """" O

The C-1 on Glc (A site) becomes a carbonium ion after releasing the phosphate
The released phosphate attracted a proton from the hydroxyl group (C-4) of the B site Glc-1-P [|P4s]




Action mechanism for Pl amylose synthesis (3)

Unpublished
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The negatively charged alkoxide attacks the carbonium ion producing a new glycosidic bond




L-SP Is predicted as phosphorylated

Chen et al, (2002) Physiologia Plantarum 114:506-515
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Several phosphorylation sites are predicted in the helices on L78




L-SP Is phosphorylated by a kinase in sweet potato roots

Young et al, (2006) Planta 223: 468-478
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L-SP Is phosphorylated specifically on its L78 insertion

Young et al, (2006) Planta 223: 468-478

L-SP H-SP L-SP* L78P L-SP  H-SP L-SP* L78P
Coomassie Brilliant Blue staining Autoradiogram

Phosphorylase molecules lacking L78 insertion can not been phosphorylated



Ser on L-SP is the target for the kinase

Young et al, (2006) Planta 223: 468-478

pH 3.5
+ < - (2nd D)
P
o P * +
. t
. .
= Do '
s o @ (1st D)
F50s L78P | MBP

MBP, myelin basic protein; S, phospho-Ser; T, phospho-Thr; P,, inorganic phosphate; x, the
origin spot of the sample; * indicates phosphopeptides by partial hydrolysis




L-SP Is phosphorylated specifically on Ser 71 of L78

Young et al, (2006) Planta 223: 468-478
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Ser 71 on L78 is the only phosphorylation site on L-SP by the kinase



Specificity of the phosphorylation site

Young et al, (2006) Planta 223: 468-478
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Although this kinase could also phosphorylate L-SP from potato, the exact phosphorylation -
35

site and mechanism are unclear




Computer modeling of L-SP
(base on the template of GP)
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What is the possible physiological function for the phosphorylation of L-SP?
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Phosphorylated L-SP has no change in its kinetic parameters

Young et al, (2006) Planta 223: 468-478

Starch , + P; <= Starch ;) + Glc-1-P

Synthetic direction (Chen et al. 2002)

Kyt (175)

Soluble starch : Fixed
L'SP (%’ W/V) GIC'].'P (mM) F|Xed [GIC'].'P] a [SOIUble StaI’Ch] b
Unmaodified 0.077 £0.015 1.052 £ 0.311 100.1 £ 28.6 99.2+5.8
Phosphorylated 0.070 £ 0.016 1.090 £ 0.320 98.6 + 27.7 97.1+45

a[Glc-1-P] = 4 mM; ? [soluble starch] = 0.3%

Phosphorolytic direction (Mori et al. 1993)

Kt (175)

Soluble starch : Fixed
e (%, wiv) Pi (MM) Fixed [P]° [soluble starch] ¢
Unmodified 0.115£0.023 1.498 + 0.562 22.39 £ 5.07 18.46 + 4.08
Phosphorylated 0.108 £ 0.021 1.443 £ 0.568 21.92 +3.31 18.06 £ 3.40

¢[P.] =5 mM; 9 [soluble starch] = 0.2%




|s the phosphorylation of L-SP a signal for its proteolytic modification on L78?

Phosphorylated L-SP is sensitive to proteolytic modification

Young et al, (2006) Planta 223: 468-478

Unmodified L-SP Phosphorylated L-SP
Coomassie > . SP110
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How Is the phosphorylation connected to proteolysis?
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Destruction boxes

U

< :I Phosphorylation ]
? PHRY ? Signal

|
Hardin,S.C., Tang,G.Q., Scholz,A., l

Holtgraewe,D., Winter,H., Huber,S.C.
(2003) Phosphorylation of sucrose |::> ProteolytiC
synthase at serine 170: occurrence modification

and possible role as a signal for
proteolysis. Plant J 35: 588-603

Ublqumn-proteasome system 78 removed

Phosphorylation of L78 might trigger the removal of the L78 insertion, and change the catalytic
behavior of L-SP from starch synthesis to phosphorolysis

Regulate L-SP
catalytic directions
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A high MW complex (HX) expressing SP activity is found

Sephacryl S-300
M 38 40 42 44 46 483 OS50 52 54 56 58 60 62 64 66 68 70 72
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HX consists of L-SP and 20S proteasome

Unpublished
: Matched  Sequence  Match . Accession
0 M HX no.  Full protein name peptide lcoverage(%)| score Species number 19S
I 208 proteasome o.-subunit 8 29 333 Lycopersicon esculentum CAA74725
669 20S proteasome a-subunit 6 19 252 Glycine max AAC28135
208 proteasome o.-subunit 6 21 145  Arabidopsis thaliana CAA74025
1208 proteasome o2-subunit 6 16 236  Arabidopsis thaliana AAG48830 208
440 starch phosphorylase 4 5 228 Ipomoea batatas 1802404 A
1208 proteasome ol -subunit 7 21 217 Nicotiana tabacum CAB39975
20S proteasome o1 -subunit 4 13 174  Oryza sativa XP_ 470540
232 208 proteasome o.5-subunit 6 17 190  Glycine max AAF70292
208 proteasome a.3-subunit 5 17 184  Euphorbia esula AAF34770
208 proteasome o3-subunit 5 15 159  Petuniax hybrida AAC35982 M HX
kD
140 prm—
1
(L-SP) .
,—» Native-PAGE — Band 1 — LC/MS/MS 2
. HX :
- . 4
SDS-PAGE Band 1~7 — LC/MS/MS 15
6 % native-PAGE
CBR staining
. Matched Sequence  Match . Accession
no. Full protein name : o Species
peptide coverage (%) score number
1 starch phosphorylase 10 14 220 Ipomoea batatas 1802404 A
2 starch phosphorylase 86 51 1727 | Ipomoea batatas T10947
3 starch phosphorylase 18 19 428 Ipomoea batatas 1802404 A !
4 chaperonin 60 19 25 451 Cucurbita CAA50218
5  starch phosphorylase 30 28 454 | Ipomoea batatas 1802404 A ‘
~ 6 20S proteasome a.6-subunit | 36 29 269 | Nicotiana benthamiana AAN07899
7 208 proteasome o.-subunit 13 28 466  Lycopersicon esculentum CAA74725| 12.5% SDS-PAGE

CBR Staining



Double diffusion reveals the components of HX

Unpublished

+

Control

HX can not be reconstituted by just mixing L-SP and proteasome in the test tube (Control)




Both L-SP and proteasome are detected in amyloplast

Unpublished

Control (no primary Ab)

J3b (anti L-SP)

M71 (anti proteasome)




Blue-native 2D PAGE and immunostaining for HX

Blue native PAGE (1st dimension)

Unpublished

Top HX Bottom
1

x0 Lsp
160 =
110 SP110 * 2
90 S L78P
70 £ J3b HH H7c
©
55 F50s @c/
45 0 M
)
25 ; - N-terminal half of L-SP
Only H7c could stain the HX : . . .
sl (8 ba¥1d on the native PAGE including L78 is buried
A SRS v o inside the proteasome
CBR staining
HX L-SP HX L-SP HX L-SP
J3b g | Ler H7c ) |
- ]




The degradation of L-SP is protected by proteasome inhibitor
mADb H7c

SP110

F50s

SP110

F50s

10% SDS-PAGE

L-SP only

Extract only

L-SP + Extract

reeee

-

L-SP + Extract + Inhibitor

E64

MG132

",

Lactacystin

012 1 2 3

0121 2 3

012 1 2 3 (day)

Unpublished




The degradation of L-SP is protected by proteasome inhibitor

mAb H7c

L-SP

L-SP

L-SP only Extract only

Unpublished

L-SP + Extract — L-SP activity

“ - - "

L

“ L-SP + Extract + Inhibitor

E64 MG132

Lactacystin

01212 3 0121 2 3

012 1 2 3 (day)

7.5% native PAGE




Phosphorylation might control the proteolysis of L78 via UPS

RDALIVNWN RALLNAIGN ‘
L78 Insertion
PEST (S)

0 ey
( """"""" Phosphorylation

Destruction boxes

@ ? UPS
\ 4

Proteasome

Proteolytic
modification
Pl activity
L78 removed Hegllsle LesR
catalytic directions

Primer-independent activity is contributed by L78. L78 was removed by proteolytic modification
induced by the PEST signal or the phosphorylation-UPS pathway




L-SP Story - Major contributors 1991~-2005

and many others...
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