Structure and Physiological Function of Starch Phosphorylase from Sweet Potato Roots

- Regulation by Proteolytic Modification & Phosphorylation

莊榮輝 Rong-Huay Juang

Department of Biochemical Science & Technology, National Taiwan University 國立台灣大學 生化科技學系

Glycogen phosphorylase 肝糖磷解脢

Glycogen phosphorylase is regulated extensively to control the carbohydrate metabolism

Comparison of alpha glucan phosphorylases

Starch phosphorylase has two isoforms (L-SP and H-SP). L-SP is the major isoform in the sweet potato roots and other plants

SP catalyzes the reversible phosphorolysis of starch

Hanes CS (1940) Proc Roy Soc (London) B128: 421-450 Hanes CS (1940) Proc Roy Soc (London) B129: 174-208

SP activity is interfered by other enzymes

A Activity staining B Activity assay and interference

Some other enzymes might lead to false (+) or (-) result

The profiles of SP activity after gel filtration

SP might involve in starch biosynthesis

Chang et al, (2000) Bot Bull Acad Sin 41:105-111

SP increases proportionally when the roots accumulate starch

SP activity

Potato

Mingo-Castel et al. 1976 Albrecht et al. 2001

Maize

Liu & Shannon 1981

Rice

Baun et al. 1970

Wheat

Schupp & Ziegler 2004

SP expression

Rice

Ohdan et al. 2005

Potato

Brisson et al. 1989 St-Pierre & Brisson 1995 Duwenig et al. 1997 Albrecht et al. 2001

Spinach

Duwenig et al. 1997

Pea

van Berkel et al. 1991

Protein interaction Wheat Tetlow et al. 2004

Two growing stages of sweet potato roots

< 5 mm diameter

> 15 mm diameter

Phloem constantly accumulates starch granules and L-SP

Anomalous cambium might initiate starch biosynthesis

Anomalous cambium

Primary fiberous roots

Storage roots

Starch is synthesized by elongation-branching-trimming cycles

Ball S et al. (1996) From glycogen to amylopectin - a model for the biogenesis of the plant starch granule. Cell 86: 349-352

L78 might be evolved from an intron

Chen et al, (2002) Physiologia Plantarum 114:506-515

The DNA complexity analysis (PC/GENE) reveals that L78 might be derived from an intron sequence during the evolution of SP gene

L78 sequence reveals unique structural features

Chen et al, (2002) Physiologia Plantarum 114:506-515

Analysis of the amino acid sequence on L78 and its C-terminal flanking residues shows several unique structural features. A "*PEST sequence*" is found in the middle of L78

L-SP is proteolytic modified but still keeps its activity

Chen et al, (2002) Physiologia Plantarum 114:506-515

A SDS-PAGE:

B Disc-PAGE:

The proteolytic modification of partially purified L-SP (A). Although L-SP molecule is nicked, it keeps its native quaternary structure (B) and catalytic activity (C)

L-SP is cleaved to form two final stable fragments

Chen et al, (2002) Physiologia Plantarum 114:506-515

mAb J3b

mAb H7c

Monoclonal antibodies (J3b and H7c) simplify the SDS-PAGE patterns of L-SP during the proteolytic procedure, and reveal two final stable fragments of L-SP (N and C)

L-SP is modified by controlled proteolytic process

Chen et al, (2002) Physiologia Plantarum 114:506-515

L1 and L2 peptides are completely removed from L78

Chen et al, (2002) Physiologia Plantarum 114:506-515

Why an intron was evolved to express, and then the expressed peptide was cut away?

Proteolysis increases the affinity to starch, but not Glc-1-P

Chen et al, (2002) Physiologia Plantarum **114**:506-515

Starch_n + Glc-1-P \longrightarrow Starch_{n+1} + P_i

A Fixed [Glc-1-P]

B Fixed [soluble starch]

The proteolytic modified L-SP shows higher affinity toward one of its substrate (starch, A) But the intact L-SP has higher affinity toward Glc-1-P (B)

Removing L78 exposes starch binding site on L-SP

The starch binding site is opened by removing peptides on L78

The affinity to starch is increasing after modification

Native-PAGE

Chen et al, (2002) Physiologia Plantarum 114:506-515

L78 is a molecular switch regulating L-SP catalytic direction

Intact L-SP binds Glc-1-P preferentially and the L78 blocks the starch binding site

Primer-independent glucan biosynthesis from single Glc-1-P

Glucan is synthesized in vitro by L-SP from single Glc-1-P in the absence of a primer

The amylose synthesized is radioactive

Chen et al, (2007) submitting

The radioactive Glc-1-P is covalently bound to amylose

Further purification of amylose by ion exchange

Chen et al, (2007) submitting

The amylose contains Glc-1-P moieties

The process of polymerization shows three phases

Chen et al, (2007) submitting

The PI activity of L-SP is lost if the L78 is removed

Chen et al, (2007) submitting

Does L78 serve as the "primer" for amylose synthesis? Or an anchoring point for Glc-1-P?

Active site of L-SP showing two Glc-1-P binding sites

Action mechanism for PI amylose synthesis (1)

A site

Unpublished Bsite

Glc-1-P on A site loses its phosphate as interacting with the phosphate on the cofactor PLP

Action mechanism for PI amylose synthesis (2)

Unpublished

30

The C-1 on Glc (<u>A site</u>) becomes a carbonium ion after releasing the phosphate The released phosphate attracted a proton from the hydroxyl group (C-4) of the <u>B site</u> Glc-1-P

Action mechanism for PI amylose synthesis (3)

Unpublished

L-SP is predicted to be phosphorylated

Chen et al, (2002) Physiologia Plantarum 114:506-515

L-SP is phosphorylated by a kinase in sweet potato roots

SP110

F50s

mAb H7c

Ammonium sulfate fractions contained a kinase activity

Autoradiogram

F50s

L-SP is found phosphorylated in sweet potato roots, or in vitro phosphorylated by a protein fraction from the root extract

Young et al, (2006) Planta 223: 468-478

L-SP is specifically phosphorylated on its L78 insertion

Young et al, (2006) Planta 223: 468-478 L78 L78P L-SP H-SP L-SP* Kinase Kinase ┿ SP110 H-SP F50s **L78** L-SP H-SP L-SP* L-SP **L78P** H-SP L-SP* L78P Coomassie Brilliant Blue staining Autoradiogram

Ser on L78 is the target for the kinase

Young et al, (2006) Planta **223**: 468-478

MBP, myelin basic protein; S, phospho-Ser; T, phospho-Thr; P_i, inorganic phosphate; x, the origin spot of the sample; * indicates phosphopeptides by partial hydrolysis

L-SP is phosphorylated specifically on Ser 71 of L78

Young et al, (2006) Planta 223: 468-478

The phosphorylation site on L78 is specific

Young et al, (2006) Planta 223: 468-478

Although this kinase could also phosphorylate L-SP from potato, the exact phosphorylation site and mechanism are unclear

What is the possible physiological function for the phosphorylation of L-SP?

Phosphorylated L-SP has no change in its kinetic parameters

Young et al, (2006) Planta 223: 468-478

Starch
$$(n)$$
 + P_i \longrightarrow Starch $(n-1)$ + Glc-1-P

Synthetic direction (Chen et al. 2002)

	$K_{ m m}$		$K_{\rm cat}$ (1/s)	
L-SP	Soluble starch (%, w/v)	Glc-1-P (mM)	Fixed [Glc-1-P] ^a	Fixed [soluble starch] ^b
Unmodified	0.077 ± 0.015	1.052 ± 0.311	100.1 ± 28.6	99.2 ± 5.8
Phosphorylated	0.070 ± 0.016	1.090 ± 0.320	98.6 ± 27.7	97.1 ± 4.5

^{*a*} [Glc-1-P] = 4 mM; ^{*b*} [soluble starch] = 0.3%

Phosphorolytic direction (Mori et al. 1993)						
	$K_{ m m}$		$K_{\rm cat}$ (1/s)			
L-SP	Soluble starch (%, w/v)	P _i (mM)	Fixed [P _i] ^c	Fixed [soluble starch] ^d		
Unmodified	0.115 ± 0.023	1.498 ± 0.562	22.39 ± 5.07	18.46 ± 4.08		
Phosphorylated	0.108 ± 0.021	1.443 ± 0.568	21.92 ± 3.31	18.06 ± 3.40		

^{*c*} $[P_i] = 5 \text{ mM}; ^{d} [\text{soluble starch}] = 0.2\%$

Phosphorylated L-SP is sensitive to proteolytic modification

Is the phosphorylation of L-SP a signal for its proteolytic modification on L78?

How is the phosphorylation connected to proteolysis?

Phosphorylation of L78 might trigger the removal of the L78 insertion, and change the catalytic behavior of L-SP from starch synthesis to phosphorolysis

A high MW complex (HX) shows SP activity

Sephacryl S-300

Unpublished

HX consists of L-SP and 20S proteasome

Nicotiana benthamiana

Lycopersicon esculentum

20S proteasome α6-subunit

20S proteasome α -subunit

6

36

13

29

28

269

466

12.5 % SDS-PAGE **43** CBR Staining

AAN07899

CAA74725

Double diffusion reveals the components of HX

Both L-SP and proteasome are detected in amyloplast

Immunostaining

Unpublished

Control (no primary Ab)

Merge

Anti-proteasome Ab (Cy3)

Light microscopy

All merged

d

Blue-native 2D PAGE and immunostaining for HX

The degradation of L-SP is protected by proteasome inhibitor

10% SDS-PAGE

3 1/2 3 1/2 3 (day) 0 1/2 0 2 2 0 2 1

Unpublished

Phosphorylation might control the proteolysis of L78 via UPS

Primer-independent activity is contributed by L78. L78 was removed by proteolytic modification induced by the PEST signal or the phosphorylation-UPS pathway

and many others...

