M1 蛋白質分子模型建構

楊健志

蛋白質的基本單元是胺基酸,胺基酸的序列稱為蛋白質的一級結構,在三度空間有秩序的摺疊則構成其三級結構。胺基酸藉由胜肽鍵組成胜肽。胜肽平面與 Ca 形成的雙面角 (dihedral angle) 分別為 ϕ (phi) 角與 ψ (psi) 角。大部分蛋白質中 phi 與 psi 的組合會落在 Ramachdran plot 固定的區域,亦即蛋白質主要的二級結構特徵 α -helix 及 β -sheet。要了解蛋白質結構與功能的關係,最好的方法就是利用預製的 原子組件去組合胺基酸及胜肽。

1. 器材

HGS Biochemistry Molecular Model, 5001 Protein Nucleic Acid Set (Maruzen, Japan)。模型中 1 公分相當於 1 Å。請想想, 為何發給你的 單元 (building block) 不 是標準的胺基酸。注意,細小的零件要小心照顧。

2. 實驗操作

請先熟悉兩種幫助描述空間中原子相對排列位置的方法。第一,除了 Glycine 以外,所有的胺基酸都有鏡像異構物,分別為 D-form,L-form。通常以 L-glyceraldehyde 為標準,與其有類似原子安排的胺基酸為 L-form。為了方便,我 們採用一個口訣 "CO-R-N"。第二,雙面角 (dihedral angle) 描述相連的四個原子的 相對位置,亦即前三個原子與後三個原子所構成的兩個平面之間的夾角。 ϕ 角由 C'-N-C_a-C' 形成,頭尾兩個原子距離最遠時為 180°,距離最近時為 0°,由N 往 C_a 看,C'-N 所在位置為 0,C'往順時針方向偏為正角。 ψ 角 由 N-C_a-C'-N 形成,依 上所述類推。操作中請用尺量度二級結構中的鍵長,直徑等特性值,並紀錄之。

2.1. 請小心分開一個"胺基酸"單元,請注意代表原子的顏色。

2.1.1. Red, oxygen; blue, nitrogen; black, carbon; white, hydrogen.

2.1.2. 請辨別, sp3 carbon 為 Cα; sp2 carbon 為胜肽鍵的一部分。Hydrogen atom

- 及 hydrogen bond 也有所不同。
- 2.2. 請拿出 sp3 carbon,接上 hydrogen atom。母端保留給 R-group (side chain), 選擇剩下兩個公端其中之一依 CORN 原則接上 nitrogen,即完成 L-form configuration。

- 2.3. 利用 partial double bond (灰色小管),以 trans form 形式連接 N 與 C'。
- 2.4. 將 hydrogen bond 及 oxygen 接上,檢查完成的單元是否與未分解的單元完 全一致。
- 2.5. 將單元1上Cα 剩餘之公端與單元2之C'相接,再依序接上單元3,並使 兩相鄰C'或相鄰的N保持最遠距離(完全延伸)。請觀察你所得到的一個"近 似" tripeptide 的構造,它的 N-terminal 在哪裡?
- 2.6. 試著轉動 N-Cα bond,此即 φ角。轉動 Cα-C' bond,此即 ψ角。
- 2.7. 當 tripeptide 為 "完全延伸"時, φ =ψ= 180°, 由 N 向 Cα 觀察, 是否如下圖 所見 (from Fersht)。

- 由 N向 Cα 觀察,以靠近你的 C=O 為 0°,轉動 ◊ 角,先使角度歸零,再 逆時針旋轉 45°。
- 2.9. 由 Cα向 C'觀察,以靠近你的 N-H 為 0°,轉動 ψ,角,先使角度歸零,再逆時針旋轉 45°。依序轉動其後的雙面角。
- 2.10. 與其他組員所得相連,你得到什麼二級結構?
- 2.11. 連結 residue i 之 C=O 與 residue i+4 的 N-H 形成 H-bond。
- 2.12. 觀察所得,並以尺量度所有相對距離。

- 2.13. 小心分開單元,組成兩條完全延伸的胜肽,使成"反平行"排列,是否可以 找到很接近的 hydrogen bond donor 及 acceptor 使之相接。你得到什麼二級結 構?
- 2.14. 組成兩條完全延伸的胜肽,使成"平行"排列,是否可以找到很接近的 hydrogen bond donor 及 acceptor 使之相接? H-bond

3. 參考文獻:

- 3.1. Anna Tramontano (2006) Protein structure prediction. Wiley-VCH
- 3.2. Höltje et al (2003) Molecular Modeling. Wiley-VCH
- 3.3. Current Protocol in Bioinformatics. Wiley online book.

M2 生物資訊基礎

楊健志

生物資訊起源於蛋白質,及核酸序列的比較,1965 年 Margaret Dayhoff's 根據當時有限的蛋白質分子序列,建立資料庫,並利用電腦及數學探討生物分子間在演化上的關係。生物資訊需應用生物學,遺傳學,生物化學,數學,資訊,統計等領域的知識,以解決生物學上的問題。現代生物資訊的範疇至少包括,(1)建立新的演算法或統計方法以研究大型資料組之間的關係;(2)分析不同形式的生物資訊如蛋白質序列,蛋白質功能區塊,或三級結構;(3)建立有效率的資料庫與分析工具。本實驗利用以自動定序儀完成的核酸定序,解讀其檔案,找出核酸目標序列,轉譯成蛋白質序列,搜尋資料庫,區塊分析,多重序列比對,二級結構預測,三級結構模擬。進行這些工作之前,我們要先了解有哪些可用的生物資訊工具,及不同的資料庫。

1. 資料庫與分析工具

1.1. 資料庫

1.1.1. SwissProt (http://www.expasy.ch)

1.1.1.1. 整合型蛋白質一級結構資料庫,包含兩種序列資料庫,Swissprot 及 TrEMBL。另外也含有 ENZYME Database,提供依酵素功能分類的酵 素資料,可用 EC number 查找酵素,如 EC 1.1.1.1。資料庫中含有眾 多有用的分析工具及外部連結,如 BLAST,ScanProsite,SwissPDB viewer,SwissModel。

1.1.2. NCBI (http://www.ncbi.nlm.nih.gov/)

1.1.2.1. 整合型資料庫,提供核酸,蛋白質,文獻,及最近加入的化學分子 資料庫。

1.1.3. EMBL (http://www.ebi.ac.uk/embl/)

1.1.3.1. 核酸序列資料庫。由 EBI 維護, 在 Sanger centre 的隔壁。

1.1.4. PDB (Protein Data Bank, <u>http://www.rcsb.org</u>)

1.1.4.1. 蛋白質三級結構資料庫。

1.2. 整合型分析工具

1.2.1. EMBOSS

1.2.1.1.1. 開放自由軟體,可以下載其原始碼 (http://emboss.sourceforge.net/),提供個人使用或以網路型式提供服務。除了原始的UNIX界面,也有JAVA介面,及方便的圖型使用者介面 (GUI, graphical user interface)。以 "EMBOSS GUI" 搜尋 Google 可找到眾多公開已設置的服務 網頁,如 <u>http://anabench.bcm.umontreal.ca/html/EMBOSS/</u>。

1.2.2. GCG

1.2.2.1. 以大型伺服主機對用戶提供的整合型資料庫與分析工具軟體,原來 是 UNIX 介面,現在也提供網頁介面。

1.2.3. Vector NTI

商用個人電腦整合型軟體,本系採購四套單機版及一套網路版執照。

2. 常用分析指令或軟體

GCG	EMBOSS	Comment
	ABIview	
<u>CodonFrequency</u>	<u>chips</u> <u>compseq</u> <u>cusp</u>	CodonFrequencytabulates codon usage. compseq counts composition of dimer/trimer in sequence. chips calculates codon usage stats cusp creates a codon usage table.
<u>Frames</u>	<u>plotorf</u> <u>showorf</u>	Show open reading frames. plotorf does this graphically
<u>Map</u> <u>Mapplot</u> <u>Mapsort</u>	<u>restrict</u> <u>remap</u> <u>restover</u>	finds restriction enzyme cleavage sites. GCG & EMBOSS may display different isoschizomers of the same enzyme, but the results are equivalent. The EMBOSS remap program may not display a few of the available isoschizomers.
<u>StemLoop</u>	<u>palindrome</u> etandem	Finds inverted repeats.
Testcode	wobble	Plots 3rd-position variability as an indicator of potential coding regions.
Translate	transeq	Translates nucleotide -> Protein sequences
BLAST	<u>dbiBlast</u>	
		SwissProt, NCBI,EMBL
FASTA	N/A	
Assemble	merger	Construct new sequences from pieces of existing sequences; merger only accepts 2 sequences while assemble accepts several.
	GCG CodonFrequency Frames Frames StemLoop StemLoop I ranslate BLAST BLAST FASTA	GCGEMBOSSSABIviewCodonFrequencychips compseq cuspFramesplotorf showorfMap Mapplotrestrict remap restoverStemLooppalindrome etandemTestcodevobbleTranslatetranseqBLASTdbiBlastFASTAN/AAssemblenerger

序列比對

	<u>BestFit</u>	water matcher	Bestfit uses the Smith-Waterman algorithm to find the best local alignment between 2 sequences. water uses Smith-Waterman, matcher uses Pearson's lalign algorithm.				
	<u>Gap</u>	needle stretcher	Needleman-Wunsch algorithm to compare 2 sequences. stretcher uses the Myers-Miller algorithm which is more memory-efficient. water->matcher->supermatcher are local alignment programs for small, medium, and large sequences, respectively.				
	Prime	eprimer3	Selects oligonucleotide primers.				
一級結構分析							
	Composition	<u>compseq</u> <u>pepstats</u>	Sequence composition				
	HelicalWheel	<u>pepwheel</u>	Plots peptide sequence as helical wheel to help recognize amphiphilic regions.				
	<u>HTHScan</u>	helixturnhelix	Finds HTH motifs in protein sequences.				
	Motifs	<u>patmatmotifs</u>	Finds common Prosite motifs in a sequence.				
	Pepplot	<u>pepinfo</u>	Pepplot plots protein 2ndary structure and hydrophobicity. pepinfo plots hydrophobicity, and garnier does protein 2ndary structure prediction.				
	Composition	compseq pepstats	Sequence composition				
		antigenic	Finds antigenic sites in proteins				
		<u>tmap</u>	Displays membrane spanning regions				
二級結構分析	另有許多資料庫網頁 http://www.predictprotein.org/ http://www.igb.uci.edu/?page=tools&subPage=psss						
	Peptidestructure Plotstructure	<u>garnier</u>	Secondary structure prediction. Garnier does not include Jameson-Wolf antigenic indexing.				
多重序列比對							
	Pileup	<u>emma</u>	Multiple sequence alignment. emma is an interface to ClustalW. Can also use the standalone Clustal, or <u>web</u> <u>ClustalW</u> .				
其他							
		findkm	Find Km and Vmax for an enzyme reaction by a Hanes/Woolf plot				

3. 實驗操作

請依指示下載定序檔。

- 3.1. 核酸序列輸出及搜尋
 - 3.1.1. 找到可用的 EMBOSS GUI server。
 - 3.1.2. 從網頁左方點選 abiview,利用"瀏覽"
 - 3.1.3. 輸入之前下載的定序檔 .abi 。
 - 3.1.4. 點選"run abiview"。

- 3.2. 轉譯為蛋白質序列
 - 3.2.1. 從 abiview 輸出的序列, 複製 層析圖訊號清楚的片段。
 - 3.2.2. 從網頁左方點選 transeq,貼上片段,試著找出最長的轉譯序列。
- 3.3. 搜尋全長序列,找出同源蛋白。
 - 3.3.1. 到 Expasy (Swissprot) 首頁,點選 BLAST 工具,貼上轉譯序列。仔細看 有何參數及選項。
 - 3.3.2. 觀察 BLAST 的結果網頁,相似度最高者是什麼蛋白質? 點選該筆資料。
- 3.4. 一級結構特性分析
 - 3.4.1. 回到 EMBOSS 首頁,依作業問題尋找適當軟體執行。
- 3.5. 多重序列排比
- 3.6. 二級結構預測。
 - 3.6.1.1. 利用 EMBOSS 中 garnier 程式,分析全長蛋白質的二級結構。
- 3.7. 搜尋三級結構資料庫。

4. 參考文獻:

- 4.1.1. http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/milestones.html
- 4.1.2. Current Protocols in Bioinformatics, Wiley-VCH
- 4.1.3. Current Protocol in Bioinformatics. Wiley online book.
- 4.1.4. http://helix.nih.gov/apps/bioinfo/emboss-gcg.html

M3 蛋白質分子模擬

仔細的研究蛋白質的三級結構增進我們對於功能的了解,例如摺疊形式 (Fold),區塊組合與安排,表面電荷分佈,活性區,基質結合區,分子內交互作用, 多元體的分子間交互作用。經實驗方法如 X-ray crystallography,NMR 所決定的蛋 白質三級結構,收錄於蛋白質結構資料庫 Protein Databank (PDB, http://www.rcsb.org),目前記錄有 42350 個蛋白質結構。PDB 中的蛋白質或其他生 物分子的結構是以每一個原子的三度空間座標呈現,有許多公用或自由軟體可用來 觀察這些蛋白質三級結構,如 SwissPDBViewer,PyMol,Rasmol等,這樣的工作稱 為分子視算 (Molecular Graphic)。在 SwissProt,NCBI 中收錄有一級結構的蛋白質 的數目遠遠超過 PDB 的資料數,這是分子模擬 (Molecular modeling) 發揮應用的地 方。根據 Anfinsen 的理論,蛋白質的一級結構決定其三級結構,我們可以合理的延 伸這個原理為,有近似的一級結構的兩種蛋白質,有近似的三級結構,這個假設構 成同源分子模擬 (Homology modeling) 的基礎。

同源分子模擬的基本步驟如下。

- (1) 以 BLAST 搜尋結構已知的同源蛋白當模版 (template)。
- (2) 比對 (align) 目標蛋白與模版。
- (3) 根據模版建立模型。
- (4) 根據資料庫模擬 side-chain 及 loop。
- (5) 分子力學及能量最小化。
- (6) 構型分析,檢驗不符蛋白質結構常規者。
- (7) 根據已有功能研究知識,驗證模型,反覆進行模擬。

1. 工具軟體與資料庫

1.1. SwissProt (<u>http://www.expasy.ch</u>)

蛋白質一級結構資料庫,資料完整清楚,歷史悠久,被譽為 Golden Standard。 輔助工具眾多,如 SwissModel, SwissPDBviewer。

1.2. PDB (<u>http://www.rcsb.org</u>)

蛋白質三級結構資料庫。

1.3. Discovery Studio 1.7

完整的分子模擬軟體套件組,為一商業付費軟體。可做序列分析比對(如 BLAST,Multiple sequence alignment),同源分子模擬(Homology modeling), 蛋白-配體接合(molecular docking),分子力學(molecular dynamics),藥物設計等。這套軟體中有關分子視覺化的部份,DS visulizer,是免費的。

1.4. Modeller (http://salilab.org/modeller/)

2. 實驗操作

同源分子模擬中已知三級結構的蛋白質稱為模板 (template),而未知三級結構 的稱為目標 (target)。本實驗將接續上週實驗,利用序列比對的方式,看是否可為 經定序確認的蛋白質找到可用的模板。SwissModel 找到的模板是否與你找到的相 同。β-澱粉酶的摺疊形式是自然界中最常利用的構型,利用 Discovery Studio 為 甘藷中的 β-澱粉酶找到模板,並進行分子模擬,觀察它的結構。並學習如何找 到活性區或與基質進行 docking。

- 2.1. 利用上週的 DNA 定序檔,以 EMBOSS 找到某個蛋白質的部份序列。
- 2.2. 到 Expasy 中搜尋完整序列。
- 2.3. 將這些序列分別送到 SwissModel,是否有結果? 請先使用 First approach mode,並輸入自己的電子郵件帳號。
- 2.4. 到 Expasy 中搜尋甘藷中的 β-澱粉酶完整序列, 輸入 Discovery Studio。
 - 2.4.1. 打開軟體,是否可看到下圖。勾選所有視窗如下。分別為 File, Protocols, Jobs, Tools, Parameters

2.4.2. File \rightarrow New \rightarrow Sequence window

2.4.3. 貼上目標序列

🔜 Accelrys Discovery Studio	🔜 Accelrys Discovery Statio											
File Edit View Chemistry Structure Segrence Chart Winford Help												
ダ D A. B. Ja Be HI + HI + HI + + + + + + + + + + + + +												
存 入山北 さい谷 on イイイム	• H (9)											
😂 🖬 🥥 🎝 🕺 🗳 🖄 🗳 🗳	\$ & X X	2 A 1										
Protocols × Files	ppis - Sequenc	Window ×						Tools ×				
🗤 😑 🔁 Discovery Studio 🔥		1 10		20	30	40	50	Constraints *				
- Analysis	00000113	VALSTITITOSI VTR				CREEDCERV	TRVVVPVPC	Protein Reports and Utilities 🔹				
	Q96CY3	40 CD	20				100	Evolutionary Trace *				
Forming			10			- ⁹⁰	100	Modify Conformation *				
65 ⁹ Solvation Energy	Q98CY3	YGLGFLASSILSLTP	LDAD	DATRIDYY.	ATVGDPLO	CEASAVESGFG	FCDLDVGFG	Build and Edit Protein *				
2 Venty Protein		110 120		130	1.	40 15	0	Analysis -				
29 BLAST	Q98CY3	DEAPRGVLVNIHVTA	RFAL	GTLFDSS	YKRARPL	IMRIGVGKVIR	GLDQG1LGG	Electrostatics *				
😚 🚽 🖓 Build Models		160 170		180	190	200	210	Binding Site *				
/ Build Muterats	098073	EGVPPMRVGGKRKLO	I P P B	LAVGPEP.	AGCFSGD	CNIPGNATLLY	DINFVEIVP					
- 2 ^{re} Multiple Sequence Alignment		220	230		240	250	260	Definition				
- Profile Alignment	002022	G S N T P	-					Define Selected Molecule as Rec				
📲 PSI-BLAST	0,00010	Concentration of						Define Sphere from Selection				
- 2 Refine Loops	. D: 0.1.0	A DALLY FOLDI ANT						Find Sites from Receptor Cavitie				
 Sequence Struktorous Accelly's Lakovery and	sorDiscovery storiour	own Notemgrat-BLAS1						Find Sites as Volume of Selected				
Structus Alignment - Align3D												
😑 😋 Receptor-Ligand Interactions								Site Editing				
- 27 Consensus Score								Contract Binding Site				
2 ^{on} De Novo Resentor Mode								Exmand Flinding Site				
- 🚰 Docking								Dalata Sita Dainta				
- 🖓 Docking Refinement								Bandway Pile				
* Prigment Larranes								Paration and				
In-Situ Ligand Minimization								Convert Io Atoms				
2 ^{or} Scoring								Dimby				
E C Sunnishon												
= Euclideation								Forcefield *				
- 2 Hesting								3D Pointer and Labels 🔍				
- 99 Minimization								X-LIGAND -				
- of Production								X-BUILD *				
🖓 Standard Dynamics Cascada 🗸 🗸								X-my *				
Jobs Help ×			P	SI-BLAST ×								
DET BLACT			1	Parameter Name		Parameter Valu						
PSI-BLAST DEL BLAST or Desition Creedin Iterated BLAST or	probac for similar	ritios hotucon a gueru	E0.	Sequence		ppis:Q9SCV3						
sequence and all the sequences in a sequence of	atabase. It is a :	tatistically driven search	L N	Database		PDB_m95						
method that finds regions of similarity between a	query sequence	and database sequences	1 F .	Matrix		BLOSUM62						
and produces gapped alignments of these region position-specific scoring reatrices (BSSMs) to score	ns. PSI-BLAST us	es a profile, i.e., a		Gap Costs		Evidence 9 Ev	Kusuli 2, Marina ?					
sequences.	e mecales beca	sen query and database		Meximum Numb	er of Passes	5						
				Expectation value	terre de Maralinels e	10						
				Filter Law Comp	axity	Fals						
				Number of Seque	nces in Output	250						
			3									

- 2.4.4. 點選 Protocols → Sequence → PsiBLAST,檢查修改 Parameters,點選綠色 三角執行。
- 2.4.5. 點選 Jobs → Success , 點選 Files → output
- 2.4.6. 右鍵點選模版 → Load selected structure

2.4.7. 如下圖, Sequence → show sequence

2.4.8. 空白處右鍵, insert sequence → From windows, 對話視窗選取目標序列。

2.4.9. 執行 Protocols → sequence alignment
2.4.10. 執行 Protocols → Build model
2.4.11. 依指示進行 minimization。

2.5. 對內建的 PDB 進行序列搜尋,比對,並進行分子模擬。依作業問題試著做做 看。有問題請隨時舉手。

3. 參考文獻:

- 3.1. Anna Tramontano (2006) Protein structure prediction. Wiley-VCH
- 3.2. Höltje et al (2003) Molecular Modeling. Wiley-VCH
- 3.3. Current Protocol in Bioinformatics. Wiley online book.

M4 醣類分子模型

楊健志

碳水化合物的種類與構形非常複雜,原因是醣類的 hemiacetal 與另一醣類或醇 類以醣苷鍵相連時,另一醣類不只一個位置具有羥基,且所形成的雙面角不像胜肽 有特定的角度組合。Hemiacetal 形成時,會有兩種 anomer 生成,這對多醣體的構形 有決定性的影響。利用分子模型組合醣類分子,可以清楚了解它的結構特徵。醣類 修飾在其他生物分子,如蛋白質,脂質,賦予他們生物分子辨識特徵,增加水溶性 等。

1. 器材

HGS Biochemistry Molecular Model , 5000 Bio-Organic Set (Maruzen, Japan) °

2. 實驗操作

2.1. 依據下圖 (Fischer projection) 建立一個葡萄糖 (P. 241, Lehninger)。

- 2.2. 直鏈狀的六碳醣類很容易趨近於一個環狀,連結適當原子形成 hemiacetal。
- 2.3. 所完成的 pyranose 調整成 "椅形",有兩種可能形式, ⁴C₁ 或 ¹C₄, 合者較 為安定?

- 2.4. 試試看不同的 anomer 構形。
- 2.5. 以 α-1,4 linkage 連接兩個葡萄糖,與組員所的相連。觀察是否有親水性與疏水性的區域。有何重要性?

- 2.6. 以 β-1,4 linkage 連接兩個葡萄糖,與組員所的相連。
- 2.7. 試試 GlcNAc 及 GalNac。

M4 醣類分子模型 - 補充 TLC

楊健志

Oligosaccharide Analysis by Thin Layer Chromotography

 β -Amylase (BA) (α -1,4-glucan maltohydrolase; EC. 3.2.1.2) catalyzes the removal of β -maltose residues sequentially from the non-reducing end of an α -1,4-glucan of variable chain length.

 β -Amylase is unique among other glycohydrolases that its catalysis proceeds with a repetitive manner, or multiple-attack mechanism. With this feature, β -amylase releases maltose effectively without dissociation from the rest of starch chain. This mechanism can be demonstrated when oligosaccharides are used as substrates. For example, when a maltose is removed from maltoheptaose, the maltopentaose still bound to the active site will be the substrate rather than a free maltoheptaose. Therefore, free maltopentaose will not be seen in the reaction mixture. If β -amylase works according to a multiple-chain mechanism, then free maltopentaose will be seen in the reaction system. We can trace the presence of maltopentaose by TLC.

To monitor the oligosaccharide released from multiple attack of β -amylase, a TLC method derived from Miyake et al was employed (Miyake et al., 2002).

Materials

Maltoheptose (G7) TLC plate (Merck, Silica gel 60, 20*20 cm) β -amylase (Sigma) Development solution (H₂SO₄ (2%):ethanol =50:50)

Procedures

A 10 µl mixture containing 1 µl of maltoheptose, 1 µl enzyme and 8 µl sodium acetate buffer (50 mM, pH 5.4) was incubated at 37 °C for appropriate time (5, 10, 20, 30, 60 seconds, respectively). The reaction mixture (1 µl) was then spotted on a TLC plate and developed by a solution of isopropanol:butanol:H₂O = 15:3.75:5. The spots was visualized by spraying a solution of H₂SO₄ (2%):ethanol =50:50 and followed by heating at 180 °C for a few minutes.